If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?

In Rutherford Scattering, an incident particle will reach the closest distance of approach when it is on a collision course head on with the target nucleus. At the closest distance of approach, the alpha particle comes to rest, hence it no longer has any kinetic energy. Because both the alpha particle and gold nucleus are positively charge, the initial kinetic energy is transformed into electric potential energy, and due to energy conservation, these must always sum to the initial kinetic energy. We can then equate the initial kinetic energy KEα to the final potential energy PEα at the instant the alpha particle is at rest with the equation PEα = KQalphaQGold/rmin = KEα where K = 1/4πε0 , Qalpha= Zalphae, QGold = ZGolde , e = 1.6x10-19C and rmin is the closest distance of approach. Substituting these and equating gives PEα = kZalphaZGolde2/rmin = KEα. To convert KEα from MeV to Joules we must divide by e and multiply by x106 hence kZalphaZGolde2/rmin = 7x10^6e  and rearranging for rmin gives rmin = kZalphaZGolde/7x10^6 = 3.25x10-14m

RN
Answered by Robert N. Physics tutor

3768 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain what happens in terms of current induced as a magnet enters a solenoid in a closed circuit, and as it leaves.


How did rutherford's gold leaf experiment prove the existence of the nucleus?


There is a point between the Moon and the Earth where the gravitational attractions are equal and opposite. How much further is this point from the Earth than the Moon


How should I structure my experiment report?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences