How do you differentiate the curve y = 4x^2 + 7x + 1? And how do you find the gradient of this curve?

To begin with, this question requires you to differentiate the curve y = 4x2 + 7x +1 in order to find the gradient. To differentiate this function y in respect to x, we need to reduce the powers by one, for example in this question dy/dx (the gradient line) will become:dy/dx = (42)x2-1 + (71)x(1-1) + (10), which becomes dy/dx = 8x +7. This is the gradient of the curve, so in order to find the gradient of the curve at a specific point, we need to substitute the value we are given into dy/dx. For example, if you were asked to find the gradient of the curve at the point (1, 12), in this case x = 1 and y = 12, so when you subsitute x = 1 into dy/dx, the gradient = 15, as dy/dx = 81 +7. If the question was asking you to find the gradient when x = 5, dy/dx = 8*5 +7 = 47. Because this is a curve, the gradient is not the same at each point, as opposed to a straight line. Once you have found the value of dy/dx, you can use it to find the tangent to the curve at a point, or the normal (perpendicular to the tangent) to a curve at a given point.

KS
Answered by Katie S. Maths tutor

4422 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


Find the integral of 4sqrt(x) - 6/x^3.


Solve for x: logx(25) = log5(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning