Given y = 2x(x^2 – 1)^5, show that dy/dx = g(x)(x^2 – 1)^4 where g(x) is a function to be determined.

y=2x(x2-1)5dy/dx= 2(x2-1)5 + 2x*10x(x2-1)4dy/dx=(x2-1)4(2x2-2+20x2)dy/dx=(x2-1)4(22x2-2)

KS
Answered by Katie S. Maths tutor

8681 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)


Express square root of 48 in the form n x square root of 3 , where n is an integer


Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning