Solve algebraically the simultaneous equations x^2 +y^2 = 25, y – 3x = 13

  1. Rearrange y - 3x = 13y = 3x + 13 2. Substitute into x^2 +y^2 = 25x^2 + (3x + 13)^2 = 25 3. Expand bracketx^2 +(9x^2 + 39x +39x +169) = 25 4. Form quadratic equation 10x^2 + 78x + 144 = 0 (Dividing by 2 makes factorising easier)5x^2 + 39x + 72 = 0 5. Factorise (5x + 24)(x + 3) = 0 6. Solve for xx = -24/5, x = -3 7. Substitute values of x into y = 3x +13 to find y values x = -24/5, y = -7/5x = -3, y = 4
EN
Answered by Emily N. Maths tutor

4480 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I expand (x-2)(3x+3) into a quadratic?


Solve the simultaneous equations: 3x+2y = 11, 2x-5y=20


Expand and simplify the following equation: 3(2a+2) + 4(b+4)


The equation of the line L1 is: y = 5x-4. The equation for line L2 is 2y-10x+16 = 0. Show that these two lines are parallel.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences