How does integration by parts work?

The method of integration by parts is working upon the Product Rule in differentiation. We know the Product Rule to be d/dt (uv) = uv' + vu', where u and v are separate functions and u' and v' are the corresponding differentiated functions. Using this, we can get I[d/dt (uv)dt] = I[(uv' + vu')dt], where I[] is the integral of the functions within the square brackets. This then gives us uv = I[uv' dt] + I[vu' dt]. This can then be arranged to give the formula of Integration by Parts which is I[uv' dt] = uv - I[vu' dt]. This is how you derive the formula of Integration by Parts, however you will not be expected to know this in your exams, this is simply a way of helping you to understand where the formula comes from and to put away any confusion you may have had on this topic.

FI
Answered by Finn I. Maths tutor

3298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


Find the derivative of f(x)=exp((tanx)^(1/2))


Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning