Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5

1.)x2 + y2 = 10 2.)x + 2y = 5. Rearrange 2nd equation: x = 5 - 2y. Substitute back into 1st equation: (5 - 2y)2 + y2 = 10. Multiply out brackets: 4y2 - 20y + 25 + y2 = 10. Rearrange equation: 5y2 - 20y + 15 = 0. Simplify equation: y2 - 4y + 3 = 0. Factorise: (y-3)(y-1) = 0. Therefore: y = 3 or y = 1. Sub values of y back into equation 2 to find x values. When y = 3: x + 2(3) = 5, so x + 6 =5, therefore x = -1 and so the coordinates are (-1, 3). When y = 1: x + 2(1) = 5, so x + 2 = 5, therefore x = 3 and so coordinates are (3, 1). To check sub x and y values into equations and see if you get the correct answers

EW
Answered by Edward W. Maths tutor

9858 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the location of the turning point of the following curve, y = x^2 + 6x - 7


If a particle of mass m is launched vertically upwards from the ground with velocity u m/s, how long will it take to return to the ground in terms of m, u and g?


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


What is Integration


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning