Prove that the sum of four consecutive whole numbers will always be even.

First, check you understand what the question's asking by determining the key words. Next, try a couple of examples to convince yourself that the statement does in fact work, i.e 1+2+3+4=10, which is even.
Now, rather than specific examples let's take the number 'x'. The next consecutive whole number after x will be x+1, after that will be x+2 and so on. We can now call our four consecutive numbers x, x+1, x+2, x+3.
So, when we 'sum' these 4 numbers we get;
x + (x+1) + (x+2) + (x+3) = (x+x+x+x) + (1+2+3) = 4x + 6.
If we look carefully at '4x + 6', we should be able to factorise this quite easily. If we rewrite it as the following;
4x+6 = 2(2x+3).
We can see here that the answer is even, as it will always be a multiple of 2, no matter what value we take 'x' to be.

EB
Answered by Emma B. Maths tutor

25829 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that 3/8 divided by 7/12 = 9/14


Solve the simultaneous equation 6y+3x=24, 4y+5x=28


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


How do you solve quadratic equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning