Prove that the sum of four consecutive whole numbers will always be even.

First, check you understand what the question's asking by determining the key words. Next, try a couple of examples to convince yourself that the statement does in fact work, i.e 1+2+3+4=10, which is even.
Now, rather than specific examples let's take the number 'x'. The next consecutive whole number after x will be x+1, after that will be x+2 and so on. We can now call our four consecutive numbers x, x+1, x+2, x+3.
So, when we 'sum' these 4 numbers we get;
x + (x+1) + (x+2) + (x+3) = (x+x+x+x) + (1+2+3) = 4x + 6.
If we look carefully at '4x + 6', we should be able to factorise this quite easily. If we rewrite it as the following;
4x+6 = 2(2x+3).
We can see here that the answer is even, as it will always be a multiple of 2, no matter what value we take 'x' to be.

EB
Answered by Emma B. Maths tutor

26688 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

200 pupils are taking a school trip. Some are flying, some are taking the bus. There are three times as many boys going as girls. One third of the boys going are flying. How many boys are getting the bus?


Factorise x^2+6x+5=0 by completing the square.


How do you differentiate? And how is integration related to it?


How do you multiply out two brackets?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning