Solve the simultaneous equations: 3x-y=13, 2x+y=12

To solve these simultaneous equations we first need to eliminate one variable (the x or the y). For this we will need the coefficients (numbers in front of the variables) to be equal or opposite on one variable in each of the equations. In our question, we can already see the first equation has a +1 in front of the y, and the second equation has a -1 in front of the y. Adding these two equations together gets 5x=25 which is great because the y has been completely eliminated and we can divide both sides of the equation by 5 to get x=5! Substituting this back into our first equation gives (2x5)+y=12. Take 10 off both sides to get y=2, and there we have solved the simultaneous equations for x and y.

ED
Answered by Ellie D. Maths tutor

4742 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The perimeter of a right angled triangle is 72cm. The length of its sides are in the ratio 3:4:5. Work out the area of the triangle.


Simplify 3x^(2)+13x-30/x^(2)-32


Solve the following simultaneous equations: x^2 + y^2 = 12, x - 2y = 3


How do I factorise 12y-18


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences