Solve the simultaneous equations: 3x-y=13, 2x+y=12

To solve these simultaneous equations we first need to eliminate one variable (the x or the y). For this we will need the coefficients (numbers in front of the variables) to be equal or opposite on one variable in each of the equations. In our question, we can already see the first equation has a +1 in front of the y, and the second equation has a -1 in front of the y. Adding these two equations together gets 5x=25 which is great because the y has been completely eliminated and we can divide both sides of the equation by 5 to get x=5! Substituting this back into our first equation gives (2x5)+y=12. Take 10 off both sides to get y=2, and there we have solved the simultaneous equations for x and y.

ED
Answered by Ellie D. Maths tutor

5548 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you convert a recurring decimal in to a fraction?


Factorise y^2 + 27y and simplify w^9/w^4


Using the diagram and your knowledge of vectors, show that BCD is a straight line


There are 720 boys in a school and 700 girls. The probability that a girl chosen at random studies french is 3/5 and the probability that a boy chosen at random studies french is 2/3. What is the total number of students in the school that study french?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning