Express x^2+8x+15 in the form (x+a)^2-b

Completing the Square is required to solve this equation. First, identify A,B, and C of the quadratic equation: A=1, B=8, C=15. Halve B to obtain a: B/2 = 8/2 = 4 so a = 4. Substitute a into the form (x+a)2-b: (x+4)2-b. Square a because it is within the squared brackets: a2 = 42 =16. Subtract the square of a from the equation (x+4)2-b: (x+4)2-16. Add C to the equation to obtain the final answer: (x+4)2-16 +15 = (x+4)2-1. ANS=(x+4)2-1

MP
Answered by Mahfuza P. Maths tutor

30879 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a.) simplify and expand (x+3)(2x+5) b.) differentiate (x+3)(2x+5) c.) where does this function intercept the x and y axis? d.) does this function have any turning points? if so where?


What is Pythagoras' Theorem and how do I use it?


Solve 67x – 5 = 12x + 13


Calculate the mean value of 34,35,36,32,39.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning