Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ

First rewrite right hand side in terms of sinθ and cosθ, because those are the terms we'll be dealing with on the left hand side: sec2θ+tan2θ = 1/cos2θ + sin2θ/cos2θ, so RHS = (1+sin2θ)/cos2θNow look at the LHS side terms. We probably want to get rid of the cosθ-sinθ on the bottom line to try and get the LHS to look like the RHS. Try multiplying by (cosθ+sinθ) on top and bottom: gives (cos2θ+sin2θ+ 2cosθsinθ)/(cos2θ-sin2θ)Now apply double angle formulas: cos2θ+sin2θ=1 sin2θ= 2cosθsinθ cos2θ-sin2θ=cos2θsubstituting in with these formulas leaves: (1+sin2θ)/cos2θwhich, as we worked out at the start, is equal to sec2θ+tan2θ!

MM
Answered by Margot M. Maths tutor

7389 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first 4 term of the binomial expansion (2-4x)^5


Solve the inequality 􏰂|2x + 1|􏰂 < 3|􏰂x − 2|􏰂.


The curve has the equation y= (x^3)/(2x-1). Find dy/dx.


For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences