Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ

First rewrite right hand side in terms of sinθ and cosθ, because those are the terms we'll be dealing with on the left hand side: sec2θ+tan2θ = 1/cos2θ + sin2θ/cos2θ, so RHS = (1+sin2θ)/cos2θNow look at the LHS side terms. We probably want to get rid of the cosθ-sinθ on the bottom line to try and get the LHS to look like the RHS. Try multiplying by (cosθ+sinθ) on top and bottom: gives (cos2θ+sin2θ+ 2cosθsinθ)/(cos2θ-sin2θ)Now apply double angle formulas: cos2θ+sin2θ=1 sin2θ= 2cosθsinθ cos2θ-sin2θ=cos2θsubstituting in with these formulas leaves: (1+sin2θ)/cos2θwhich, as we worked out at the start, is equal to sec2θ+tan2θ!

MM
Answered by Margot M. Maths tutor

7335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5


What is differentiation used for in the real world?


It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences