Integrate x^2 + 1/ x^3 +3x +2 using limits of 1 and 0

By noticing the the numerator (x^2 + 1) is similar to the derivative of the denominator (x^3 +3x +2) you can integrate the function by using natural logarithms, to form the logarithm ln( x^3 +3x +2). However, the derivative of denominator (x^3 +3x +2) is 3x^2 +3 which is 3 times the size of the numerator (x^2 + 1) meaning an adjustment factor of 1/3 is needed in order to satisfy the integral. This then forms the integral 1/3 ln( x^3 +3x +2) where the limits 1 and 0 can now be substituted into. And, applying these limits results in the equation 1/3ln(6) - 1/3ln(2) which simplfies to 1/3ln(3) due to log laws.

AT
Answered by Aaron T. Maths tutor

2915 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A trader buys 6 watches at £25 each. He scratches one of them, so he sells that one for £11. He sells the other 5 for £38 each. Find his profit as a percentage.


A ladder 6.2m long is leaning against a wall. The bottom of the ladder is 0.8m from the wall. Calculate the distance the ladder reaches up the wall, giving your answer to two decimal points.


Write 8^2(4^2 / 2^7) in the form 2^x


i) Make y the subject of the expression x = ((a-y)/b))^1/2 ii) Simplify fully (2x^2 − 8)/(4x^2 − 8x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences