Can you differentiate y = (x^4 + x)^10

To solve this equation we will need to apply the chain rule. This states that:dy/dx = dy/du * du/dxTo make the question simpler, we shall let u = x4+ x, and so:y = u10 and u = x4+ xBoth of these equations can be differentiated to give:dy/du = 10u9 and du/dx = 4x3+ 1Using the chain rule formula written above, dy/dx = dy/du * du/dx = 10u9 * (4x3+ 1) = 10(4x3+ 1)(x4+ x)9

SA
Answered by Shaan A. Maths tutor

3796 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


Find the exact gradient of the curve y = ln(1-cos 2x) at the point with x-coordinate π/6.


What does differentiation actually mean?


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning