How do I implicitly differentiate and why does it work? (Assuming understanding of differentiation)

Implicit differentiation can be used when you are asked to find dy/dx of a function that has not been written as y=f(x) e.g. y = x^2 - 1, and which cannot be rearranged as such. We can use the equation of a circle as an example, x^2 +y^2 = 25. In order to implicitly differentiate we have to differentiate each term with respect to x, this is straight forward for the x^2 and 25 terms but for any term which is a function of y we differentiate pretending that y is just another x term and then multiply that by dy/dx. e.g. y^2 -> 2ydy/dx. Once all the terms have been dealt with we can rearrange to find dy/dx.Why does this work? Let's consider what differentiating a function of y with respect to y looks like: df(y)/dy, but we need to find df(y)/dx so if we times df(y)/dy x dy/dx we can see that the product is now df(y)/dx for that term.

SO
Answered by Sorcha O. Maths tutor

3775 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass 5kg is held at rests on a slope inclined at 30 degrees to the horizontal. The coefficient of friction for the slope is 0.7, determine whether the particle will move when released.


How do you solve the equation e^2x - 2e^x - 3 = 0 ?


Why does 1/x integrate to lnx?


Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning