Differentiate (x^0.5)ln(x) with respect to x.

First it's helpful to write f(x) = (x^0.5)ln(x)The product rule is useful here, this may be written in the form (u(x)v(x))' = u(x)v'(x) + u'(x)v(x).Here we will take u(x) = x^0.5 and v(x) = ln(x), meaning f(x) = u(x)v(x). Now, remembering that x^0.5 is simply the square root of x, we find:u'(x) = 0.5x^(-0.5).Differentiating logs can sometimes be tricky, but here we have the simple case of ln(x):v'(x) = (1/x), I would recommend memorising this resultThrough substitution, f'(x) = (x^0.5)(1/x) + (0.5x^(-0.5))(ln(x)) = (x^(-0.5)) + (ln(x))/(2x^0.5) = (2 + ln(x))/(2*x^0.5)

CC
Answered by Connor C. Maths tutor

4240 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: sin(x) + 2x^2


Find the differential of y(x)=(5x*Cos(3x))^2


Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.


When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning