Differentiate (x^0.5)ln(x) with respect to x.

First it's helpful to write f(x) = (x^0.5)ln(x)The product rule is useful here, this may be written in the form (u(x)v(x))' = u(x)v'(x) + u'(x)v(x).Here we will take u(x) = x^0.5 and v(x) = ln(x), meaning f(x) = u(x)v(x). Now, remembering that x^0.5 is simply the square root of x, we find:u'(x) = 0.5x^(-0.5).Differentiating logs can sometimes be tricky, but here we have the simple case of ln(x):v'(x) = (1/x), I would recommend memorising this resultThrough substitution, f'(x) = (x^0.5)(1/x) + (0.5x^(-0.5))(ln(x)) = (x^(-0.5)) + (ln(x))/(2x^0.5) = (2 + ln(x))/(2*x^0.5)

CC
Answered by Connor C. Maths tutor

4176 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^x


differentiate y=8x^3 - 4*x^(1/2) + (3x^2 + 2)/x


Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?


A uniform ladder is leaning against a smooth wall on a rough ground. The ladder has a mass of 10 kilograms and is 4 metres long. If the ladder is in equilibrium, state an equation for the coefficient of friction of the ground


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning