Differentiate (x^0.5)ln(x) with respect to x.

First it's helpful to write f(x) = (x^0.5)ln(x)The product rule is useful here, this may be written in the form (u(x)v(x))' = u(x)v'(x) + u'(x)v(x).Here we will take u(x) = x^0.5 and v(x) = ln(x), meaning f(x) = u(x)v(x). Now, remembering that x^0.5 is simply the square root of x, we find:u'(x) = 0.5x^(-0.5).Differentiating logs can sometimes be tricky, but here we have the simple case of ln(x):v'(x) = (1/x), I would recommend memorising this resultThrough substitution, f'(x) = (x^0.5)(1/x) + (0.5x^(-0.5))(ln(x)) = (x^(-0.5)) + (ln(x))/(2x^0.5) = (2 + ln(x))/(2*x^0.5)

CC
Answered by Connor C. Maths tutor

3933 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning