What is y' when y=3xsinx?

In order to differentiate something like y=3xsinx, you need to make use of the product rule. The product rule says that when you have an equation in the form y=f(x)g(x), you can find y' by using the formula y'=f'(x)g(x) + g'(x)f(x).For the equation y=3xsinx, this basically means we can split it into two separate functions of x and differentiate them seperately. In this case we have, for example, that f(x)=3x and g(x)=sinx. So we have that f'(x)=3 and that g'(x)=cosx. By applying the product rule from above [y'=f'(x)g(x) + g'(x)f(x)], we have that y'=3sinx+3xcosx.This works for any y=f(x)g(x), as long as both f(x) and g(x) have valid derivatives.

ES
Answered by Edward S. Maths tutor

8843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


How do you solve the equation e^2x - 2e^x - 3 = 0 ?


Integrate 2x^2 + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning