What is y' when y=3xsinx?

In order to differentiate something like y=3xsinx, you need to make use of the product rule. The product rule says that when you have an equation in the form y=f(x)g(x), you can find y' by using the formula y'=f'(x)g(x) + g'(x)f(x).For the equation y=3xsinx, this basically means we can split it into two separate functions of x and differentiate them seperately. In this case we have, for example, that f(x)=3x and g(x)=sinx. So we have that f'(x)=3 and that g'(x)=cosx. By applying the product rule from above [y'=f'(x)g(x) + g'(x)f(x)], we have that y'=3sinx+3xcosx.This works for any y=f(x)g(x), as long as both f(x) and g(x) have valid derivatives.

ES
Answered by Edward S. Maths tutor

8654 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't understand chain rule for differentiation especially when combined with more complex functions.


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


Find the first differential with respect to x of y=tan(x)


Find the equation of the the tangent to the curve y=x^3 - 7x + 3 at the point (1,2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning