What is y' when y=3xsinx?

In order to differentiate something like y=3xsinx, you need to make use of the product rule. The product rule says that when you have an equation in the form y=f(x)g(x), you can find y' by using the formula y'=f'(x)g(x) + g'(x)f(x).For the equation y=3xsinx, this basically means we can split it into two separate functions of x and differentiate them seperately. In this case we have, for example, that f(x)=3x and g(x)=sinx. So we have that f'(x)=3 and that g'(x)=cosx. By applying the product rule from above [y'=f'(x)g(x) + g'(x)f(x)], we have that y'=3sinx+3xcosx.This works for any y=f(x)g(x), as long as both f(x) and g(x) have valid derivatives.

ES
Answered by Edward S. Maths tutor

8969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the expression cos^2(x).


Find d/dx (ln(2x^3+x+8))


Differentiate with respect to x: 4(x^3) + 2x


Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning