What is y' when y=3xsinx?

In order to differentiate something like y=3xsinx, you need to make use of the product rule. The product rule says that when you have an equation in the form y=f(x)g(x), you can find y' by using the formula y'=f'(x)g(x) + g'(x)f(x).For the equation y=3xsinx, this basically means we can split it into two separate functions of x and differentiate them seperately. In this case we have, for example, that f(x)=3x and g(x)=sinx. So we have that f'(x)=3 and that g'(x)=cosx. By applying the product rule from above [y'=f'(x)g(x) + g'(x)f(x)], we have that y'=3sinx+3xcosx.This works for any y=f(x)g(x), as long as both f(x) and g(x) have valid derivatives.

ES
Answered by Edward S. Maths tutor

8579 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the stationary points of the curve 3x=y+6x+3


Find the set of values for x for which x^2 - 9x <= 36


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Prove by contradiction that sqrt(3) is irrational. (5 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning