What is y' when y=3xsinx?

In order to differentiate something like y=3xsinx, you need to make use of the product rule. The product rule says that when you have an equation in the form y=f(x)g(x), you can find y' by using the formula y'=f'(x)g(x) + g'(x)f(x).For the equation y=3xsinx, this basically means we can split it into two separate functions of x and differentiate them seperately. In this case we have, for example, that f(x)=3x and g(x)=sinx. So we have that f'(x)=3 and that g'(x)=cosx. By applying the product rule from above [y'=f'(x)g(x) + g'(x)f(x)], we have that y'=3sinx+3xcosx.This works for any y=f(x)g(x), as long as both f(x) and g(x) have valid derivatives.

ES
Answered by Edward S. Maths tutor

8281 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Showing all your working, evaluate ∫(21x^6 - e^2x- (1/x) +6)dx


Consider the function f(x) = 2/3 x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient:


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences