Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.

Use the formula cos(A+B)=cosAcosB-sinAsinB, Rcos(theta+alpha)=Rcos(alpha)cos(theta)-Rsin(alpha)sin(theta)5=Rcos(alpha)2=Rsin(alpha)tan(alpha)=2/5alpha= 0.381R=sqrt(5^2+2^2)=sqrt(29)So, 5cos(theta) – 2sin(theta) = sqrt(29)cos(theta+0.381)

JW
Answered by Joe W. Maths tutor

10765 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.


Rationalise the denominator of \frac{6}{\sqrt{2}}.


How to integrate and differentiate ((3/x^2)+4x^5+3)


Make a the subject of 3(a+4) = ac+5f


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences