Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.

Use the formula cos(A+B)=cosAcosB-sinAsinB, Rcos(theta+alpha)=Rcos(alpha)cos(theta)-Rsin(alpha)sin(theta)5=Rcos(alpha)2=Rsin(alpha)tan(alpha)=2/5alpha= 0.381R=sqrt(5^2+2^2)=sqrt(29)So, 5cos(theta) – 2sin(theta) = sqrt(29)cos(theta+0.381)

JW
Answered by Joe W. Maths tutor

11710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y = 2sin(4x)


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


How to find the reciprocal of a graph, such as y=cos(x)?


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning