Calculate the binomial expansion of (2x+6)^5 up to x^3 where x is decreasing.

In order to use the binomial expansion, we must have an 'x' with no coefficients - so no number before it.
So we take out a factor of 2:(2(x+3))^5
We can then simplify to:32(x+3)^5
by expanding out 2^5.
Now we use the binomial theorem you can see on your formula sheet you have with you, in this case letting n=5, and a=3. We need this down to x^3. So we get:
32((5C0)x^5+(5C1)3x^4+(5C2)*(3^2)*x^3+...)
Don't forget the 32 on the outside because that does matter!
We only need it to x^3 so we can ignore anything after and then simplify this:
32(x^5+15x^4+90x^3)
And finally, we expand out to get...
32 x^5+480 x^4+2280 x^3

SC
Answered by Sophie C. Maths tutor

4041 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


Integral of 1/(x^3 + 2x^2 -x - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning