How do you solve a simultaneous equation by 'substitution'?

Firstly, demonstrate with an example: Solve: 3x + y = -9 and x2 + 2x - 3 = yRearrange the first equation to get "y" by itself by moving parts of the equation to the other side e.g. y = - 9 - 3xSubstitute your new value for "y" in terms of "x" into the second equation e.g. x2 + 2x -3 = -9 - 3xMove all the terms onto the same side of the equation to make it equal 0 e.g. x2 + 5x + 6 = 0Factorise your quadratic e.g. (x + 2)(x + 3) = 0 (you can check this by expanding the brackets back out using the 'FOIL' methodFrom this we know x = -2 and x = -3We then plug these values back into our equation we made earlier: y = -9 - 3xWhen x = -2, y = -3 and when x = -3, y = 0

SH
Answered by Sophie H. Maths tutor

2994 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: y = 4x^2 - 9x - 1 and y = 5 - 4x


Workout 2 1/7 + 1 1/4


Evaluate x^2 +2x -4 = 0


Solve the following simultaneous equations: 3x + 5y = 19 and 8x - 2y = -18. If both equations represent lines in a coordinate system, at which point do they intersect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning