y = arcsec(x), Find dy/dx.

The key to this problem is to apply sec to both sides, and then differentiate implicitly: sec(y)=x; dsec(y)/dx = 1; tan(y)sec(y)dy/dx = 1; dy/dx = 1/(tan(y)sec(y)). Then using the fact that sec(y)=x and tan2x + 1 = sec2x, we can rewrite our derivative in terms of x only: dy/dx = 1/(x√(x2-1))

NY
Answered by Nicholas Y. Maths tutor

4820 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of the following quadratic equation: x^2 +2x -15 =0


What does it mean when I get a negative value when I do a definite integral?


When and how do I use the product rule for differentiation?


Find integers A and B, such that (5x +4)/((2-x)(1+3x)) = A/(2-x) + B/(1+3x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning