Find the turning points of the curve y=2x^3 - 3x^2 - 14.

First differentiate the equation: dy/dx = 6x^2 - 6xSet this equal to 0 as at turning points the change in gradient is 0: 0 = 6x^2 - 6x6x(x-1)=06x=0 therefore x=0(x-1)=0 therefore x=1x=1,0Now substitute back into equation 1 to find y values and hence co ordinatesx=1 y=-15x=0 y=-14

ER
Answered by Edward R. Maths tutor

5578 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 10 kilogram block slides down a 30 degree inclined slope, the slope has a coefficient of friction of 0.2. Calculcate the blocks acceleration down the slope.


Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning