How do I solve fractions with unknowns in the denominators?

  • Google+ icon
  • LinkedIn icon
  • 904 views

To solve the equation: (5x+3)/(x) + x = 1, where (x) is the denominator, we have to convert the equation into an equation without any denominators.

To do this, we multiply each variable by (x), so the equation becomes: (5x+3) + (x)(x) = (1)(x).

The next step is to expand the brackets: 5x + 3 + x^2  = x

After this, we move all variables onto one side of the equation (by subtracting x from both sides) so that it equals 0: x^2 + 4x + 3 = 0 

Factorsing this equation we get: (x + 3)(x + 1) = 0

Therefore, we can equate each bracket to 0, giving the solutions for x:

x + 3 = 0, x = -3

x + 1 = 0, x = -1

 
 
Sophie A. A Level Economics tutor, GCSE Geography tutor, GCSE Maths t...

About the author

is an online GCSE Maths tutor with MyTutor studying at Exeter University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok