How do I solve fractions with unknowns in the denominators?

To solve the equation: (5x+3)/(x) + x = 1, where (x) is the denominator, we have to convert the equation into an equation without any denominators.

To do this, we multiply each variable by (x), so the equation becomes: (5x+3) + (x)(x) = (1)(x).

The next step is to expand the brackets: 5x + 3 + x^2  = x

After this, we move all variables onto one side of the equation (by subtracting x from both sides) so that it equals 0: x^2 + 4x + 3 = 0 

Factorsing this equation we get: (x + 3)(x + 1) = 0

Therefore, we can equate each bracket to 0, giving the solutions for x:

x + 3 = 0, x = -3

x + 1 = 0, x = -1

 
 

SA
Answered by Sophie A. Maths tutor

6038 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve this simultaneous equation: 5x+6y=3 and 2x-3y=12.


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


v^2 = u^2 + 2as u = 12 a = –3 s = 18 (a) Work out a value of v. (b) Make s the subject of v^2 = u^2 + 2as


Solve by completing the square: x^2 - 8x + 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning