Differentiate(dx) xy+4y-13

As this is not in the common form and is HomogeneousStudents should be confident to understand what differentiation does.Using the quotient rule as well as implicit differentiation we look at each part of the equation bit by bit.The differentiation of xy:This is a mixture of the chain rule and implicit differentiation.chain rule states : D/dx of ab is a(b(dx)) + b(a(dx))Therefore the differentiation of this is(x)(dy.dx)+y differentiation of 4y-13 :(4)dy/dx this is finished by adding both together finishing the question with the solution:(x)(dy.dx)+y+(4)dy/dx

NM
Answered by Nojus M. Maths tutor

2778 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate y with respect to x, where y = cos(x)/[1+tan^2(x)]


How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


Where does the geometric series formula come from?


How does integration by parts work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences