How do I expand a bracket to a negative power if it doesn't start with a 1.

Okay so consider (2 + x)^-1, we can only do the expansion we know if the bracket starts with a 1, to fix this we can factor a 2 out of the bracket so that it becomes (2(1 + x/2))^-1. Then by our rules of powers this is the same as 2^(-1)(1 + x/2)^(-1), 2^-1 = 1/2 and we can expand the remaining bracket as we have done before, so to get the first 3 terms we'd have:1/2(1 + (-1)(x/2) + (-1)(-2)(x/2)^2/2!)= 1/2(1 - x/2 + x^2/4)= 1/2 - x/4 + x^2/8

SM
Answered by Shaun M. Maths tutor

3531 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When and how do I use integration by parts?


How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?


Differentiate y=x^3+ 7x-ln(2)


Find the point of intersection of the lines y=2x-7 and 4y-2=3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences