How do I expand a bracket to a negative power if it doesn't start with a 1.

Okay so consider (2 + x)^-1, we can only do the expansion we know if the bracket starts with a 1, to fix this we can factor a 2 out of the bracket so that it becomes (2(1 + x/2))^-1. Then by our rules of powers this is the same as 2^(-1)(1 + x/2)^(-1), 2^-1 = 1/2 and we can expand the remaining bracket as we have done before, so to get the first 3 terms we'd have:1/2(1 + (-1)(x/2) + (-1)(-2)(x/2)^2/2!)= 1/2(1 - x/2 + x^2/4)= 1/2 - x/4 + x^2/8

SM
Answered by Shaun M. Maths tutor

3422 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you prove by contradiction the irrationality of surds. Use sqrt 2 as an example.


How would I solve the equation 25^x = 5^(4x+1)?


The curve A (y = x3 – x2 + x -1) is perpendicular to the straight-line B at the point P (5, 2). If A and B intersect at P, what is the equation of B? Also, find any stationary points of the curve A.


Differentiate y=x^x with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences