How do I expand a bracket to a negative power if it doesn't start with a 1.

Okay so consider (2 + x)^-1, we can only do the expansion we know if the bracket starts with a 1, to fix this we can factor a 2 out of the bracket so that it becomes (2(1 + x/2))^-1. Then by our rules of powers this is the same as 2^(-1)(1 + x/2)^(-1), 2^-1 = 1/2 and we can expand the remaining bracket as we have done before, so to get the first 3 terms we'd have:1/2(1 + (-1)(x/2) + (-1)(-2)(x/2)^2/2!)= 1/2(1 - x/2 + x^2/4)= 1/2 - x/4 + x^2/8

SM
Answered by Shaun M. Maths tutor

3571 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences