The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.

dy/dx = (2x-y2)/(2xy)Stationary points: (1, root(2)) , (1, -root (2))

RS
Answered by Rishi S. Maths tutor

8369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)


The point A lies on the curve y=5(x^2)+9x , The tangent to the curve at A is parralel to the line 2y-x=3. Find an equation to this tangent at A.


What is (5+3i)*(3+5i)


A curve (C) with equation y=3x^(0.5)-x^(1.5) cuts the X axis at point A and the origin, calculate the co-ordinates of point A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences