A circle, C, has an equation: x^2 + y^2 - 4x + 10y = 7 . Find the centre of the circle and its radius?

The equation given needs to be transformed into a more familiar equation of a circle which we know the properties of and are therefore able to find its centre. Do you know what type of equation im speaking of?Thats right, its this equation of a circle that goes like (x-a)2 + (y-b)2 = r2 where the centre of the circle is (a,b) and the radius is r.We can get our original equation into this familiar form by factorising the equation into (x - 2) - 4 + (y + 5) - 25 = 7Therefore, the equation simplifies to (x - 2) + (y + 5) = 36 thus the circle has a centre at co-ordinates (2, -5) with a radius of 6.

AA
Answered by Alex A. Maths tutor

7481 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the product rule, differentiate y=(2x)(e^3x)


Consider the functions f(x) = −x^3 + 2x^2 + 3x and g(x) = −x^3 + 3x^2 − x + 3. (a) Find df/dx (x) and hence show that f(x) has turning points at when x = 2 /3 ± √ 13/ 3 . [5] (b) Find the points where f(x) and g(x) intersect. [4]


Why does the product rule for differentiating functions work?


∫(1 + 3√x + 5x)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences