Solve the inequality |4x-3|<|2x+1|.

There are two ways to solve this problem. The easiest way is graphically, but that requires little explanation and I am not sure how to show graphs on here so I will explain it algebraically.Because both sides of the inequality sign have a modulus sign around them they somewhat will cancel out so that there are only two possible cases. The first is that (4x-3)<(2x+1). We can rearrange this to get 2x<4 and then divide both sides by 2 to get x<2. The other possible case is that (4x-3)>-(2x+1). In this case we can simplify to (4x-3)>(-2x-1). Then rearrange to get 6x>2. We then divide both sides by 6 to get x>(1/3). We can combine these answers to get (1/3)<x<2. I would then advise you to check the solution graphically.

NH
Answered by Nathanael H. Maths tutor

8348 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


y=x^2 +4x-12, Find the Range (co-domain) when the domain of x is (1) -6 to 2 inclusive (2) the set of real numbers, R.


What are the first 4 non-zero terms in the binomial expansion of (2+3x)^6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning