Solve the inequality |4x-3|<|2x+1|.

There are two ways to solve this problem. The easiest way is graphically, but that requires little explanation and I am not sure how to show graphs on here so I will explain it algebraically.Because both sides of the inequality sign have a modulus sign around them they somewhat will cancel out so that there are only two possible cases. The first is that (4x-3)<(2x+1). We can rearrange this to get 2x<4 and then divide both sides by 2 to get x<2. The other possible case is that (4x-3)>-(2x+1). In this case we can simplify to (4x-3)>(-2x-1). Then rearrange to get 6x>2. We then divide both sides by 6 to get x>(1/3). We can combine these answers to get (1/3)<x<2. I would then advise you to check the solution graphically.

NH
Answered by Nathanael H. Maths tutor

7873 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4x^3 - 5/x^2 find dy/dx


Prove algebraically that n^3 +3n -1 is odd for all positive integers n


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


Simplify: (log(40) - log(20)) + log(3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences