Solve the inequality |4x-3|<|2x+1|.

There are two ways to solve this problem. The easiest way is graphically, but that requires little explanation and I am not sure how to show graphs on here so I will explain it algebraically.Because both sides of the inequality sign have a modulus sign around them they somewhat will cancel out so that there are only two possible cases. The first is that (4x-3)<(2x+1). We can rearrange this to get 2x<4 and then divide both sides by 2 to get x<2. The other possible case is that (4x-3)>-(2x+1). In this case we can simplify to (4x-3)>(-2x-1). Then rearrange to get 6x>2. We then divide both sides by 6 to get x>(1/3). We can combine these answers to get (1/3)<x<2. I would then advise you to check the solution graphically.

NH
Answered by Nathanael H. Maths tutor

8706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])


Solve the quadratic inequality: x^2 - 5x + 4 < 0


An object of mass 3kg is held at rest on a rough plane. The plane is inclined at 30º to the horizontal and has a coefficient of friction of 0.2. The object is released, what acceleration does the object move with?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning