How do I differentiate an expression of the form y = (ax+b)^n?

In order to differentiate this we need to use the chain rule- first let u = ax + b. Then differentiating, du/dx = a. By substituting into the original expression, we can obtain y = u^n. Differentiating that gives dy/du = nu^(n-1). Since, using the chain rule, dy/dx = du/dx * dy/du = anu^(n-1). Subbing back in for u, we obtain our answer: an(ax+b)^(n-1).

SC
Answered by Sam C. Maths tutor

11577 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations y = x + 3, y^2 - x^2 + 3 = -6x


Integrate ln(e^x)


Differentiate the equation 4x^5 + 2x^3 - x + 2


Can you explain the sum of 1 to 100?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning