Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .

The starting point for a question like this is to differentiate the function - in this case the curve y=3x2 -7x+5 . We calculate that dy/dx=6x-7 . The question tells us that we are interested in the case where x=2 . When x=2, dy/dx = 6(2)-7 = 5 . We want to find the equation of the tangent in the form y=mx+c . We can substitute in the information we already have (known point from the question and the gradient which we have just calculated) . This gives 3=5(2)+c . Re-arranging this equation gives c=-7 . And so we can finish this solution with the statement "the equation of the tangent is y=5x-7".

MS
Answered by Matthew S. Maths tutor

7345 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


Find the first three terms in the binomial expansion of (8-9x)^(2/3) in ascending powers of x


Why bother with learning calculus?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning