Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .

The starting point for a question like this is to differentiate the function - in this case the curve y=3x2 -7x+5 . We calculate that dy/dx=6x-7 . The question tells us that we are interested in the case where x=2 . When x=2, dy/dx = 6(2)-7 = 5 . We want to find the equation of the tangent in the form y=mx+c . We can substitute in the information we already have (known point from the question and the gradient which we have just calculated) . This gives 3=5(2)+c . Re-arranging this equation gives c=-7 . And so we can finish this solution with the statement "the equation of the tangent is y=5x-7".

MS
Answered by Matthew S. Maths tutor

7555 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find a turning point of a function using differentiation?


The curve has the equation y= (x^3)/(2x-1). Find dy/dx.


y=x^2 +4x-12, Find the Range (co-domain) when the domain of x is (1) -6 to 2 inclusive (2) the set of real numbers, R.


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning