Solve: x^2 + y^2 = 25 y - 3x = 13

Equation 1) x2 + y2 = 25 Equation 2) y - 3x = 13 First you need to substitute a variable so there is only one unknown in the equation: 2) y = 13 + 3x Substituting this into equation 1) gives: x2 + (13 + 3x)2 = 25Multiplying out the brackets: x2 + 169 + 78x + 9x2 = 25 Simplifying the equation: 10x2 + 78x + 144 = 0 Dividing the entire equation by 2: 5x2 + 39x + 72 = 0 Next find the factors of 5 - 1,5 and 72 (1, 72. 2, 36. 3, 24. 4, 18...) Find which combination of factors, when multiplied add together to make 39: 1,5 and 3, 24 : Thus(5x + 24)(x + 3) = 0 Therefore: x = -3 and x = -24/5 Substituting these values into equation 2 gives: x = -3 y = 4 and x = -24/5 y = -7/5

LW
Answered by Lucy W. Maths tutor

11275 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The ratio of Adam's age to Bob's age is 1:2. In 12 years time, the ratio of their ages will be 3:5. Calculate their current ages.


Work out: 0.7 + 3/5


Find the values of x: x^2 + 14x + 22 = 4x -2


Paul organised an event for a charity. Each ticket for the event cost £19.95 Paul sold 395 tickets. Paul paid costs of £6000 He gave all money left to the charity. (a) Work out an estimate for the amount of money Paul gave to the charity.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning