Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

GB
Answered by George B. Maths tutor

3124 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4x^3 - 5/x^2 find dy/dx


Use the substition u = cos(x) to find the indefinite integral of -12sin(x)cos^3(x) dx


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


Solve the simultaneous equation y+4x+1=0 and y^2+5x^2+2x+0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences