Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

GB
Answered by George B. Maths tutor

3162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


Prove that the squared root of 2 is an irrational number


Find the derivative of the curve e^(xy) = sin(y)


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences