Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

GB
Answered by George B. Maths tutor

3273 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate ln(x)


Use the formula 5p + 2q = t to find the value of q when p = 4 and t = 24. 6


Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning