Solve int(ln(x)dx)

To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x - int(x(1/x)dx) = ln(x)x - int(dx) = xln(x) - x + C

GB
Answered by George B. Maths tutor

3064 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


Find the coordinates of the stationary points y=x^4-8x^2+3


|2x+1|=3|x-2|


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences