Differentiate y = ln (3x + 2)

The equation for the derivative of the natural log is dy/dx = f'(x)/f(x) where f(x) = the contents of the natural log, in this case 3x+2. So, to get dy/dx we first need f'(x), the derivative of f(x). This is 3, as the first terms x power decreases to 0, making it equal 3*1 and the constant becomes zero. This means dy/dx 3/3x+2.

WS
Answered by Will S. Maths tutor

20660 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


Simplify (5-root3)/(5+root3)


Find the derivative of yx+5y-sin(y) = x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning