Differentiate y = ln (3x + 2)

The equation for the derivative of the natural log is dy/dx = f'(x)/f(x) where f(x) = the contents of the natural log, in this case 3x+2. So, to get dy/dx we first need f'(x), the derivative of f(x). This is 3, as the first terms x power decreases to 0, making it equal 3*1 and the constant becomes zero. This means dy/dx 3/3x+2.

WS
Answered by Will S. Maths tutor

19672 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that arctan(x)+e^x+x^3=0 has a unique solution.


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


Find dy/dx of the curve x^3+5xy-2y^2-57=0


How can you factorise expressions with power 3 or higher?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences