y = 4sin(x)cos(3x) . Evaluate dy/dx at the point x = pi.

By product rule:u = 4sin(x) v = cos(3x)du/dx = 4cos(x) dv/dx = -3sin(3x)dy/dx = u (dv/dx) + v (du/dx)dy/dx = 4sin(x) * -3sin(3x) + cos(3x) * 4cos(x)dy/dx = -12sin(x)sin(3x) + 4cos(x)cos(3x)Evaluate at x = pi . dy/dx = 4.

WF
Answered by Will F. Maths tutor

4224 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


If x^2 + 4x + 3xy + y^3 = 6, find the first derivative.


Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning