Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2

Starting from the left hand side we can substitute the sin and cos sum and difference formulas. These are sin(A+B) = sinAcosB + cosAsinBand cos(A+B) = cosAcosB - sinAsinBBecause x = A = B when substituted these formulae become:sin(2x) = sin(x)cos(x) + sin(x)cos(x) = 2sin(x)cos(x)cos(2x) = cos2(x) - sin2(x) When substituted into the question(1-cos2(x) + sin2(x))/2sin(x)cos(x) = 2sin2(x)/2sin(x)cos(x) = sin(x)/cos(x) = tan(x)This is as required

JB
Answered by Jed B. Maths tutor

9108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the Equation: 2ln(x)−ln (7x)=1


Sketch the line y=x^2-4x+3. Be sure to clearly show all the points where the line crosses the coordinate axis and the stationary points


Find ∫(8x^3+6x^(1/2)-5)dx Give your answer in the simplest form.


Differentiate f(x) = (3x + 5)(4x - 7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning