How do you find a turning point of a function using differentiation?

To find the location of turning points on a function, find the first derivative of the function, and then set the result to 0. if you then solve this equation, you will find the locations of the turning points. To find what type of turning point it is, find the second derivative (i.e. differentiate the function you get when you differentiate the original function), and then find what this equals at the location of the turning points. If it's positive, the turning point is a minimum. If negative it is a maximum, and if it is equal to 0 it is a Inflection point.

NS
Answered by Nathan S. Maths tutor

53312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.


You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point


How do you integrate ln(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning