Differentiate: tan(2x) cos(x)

  1. Explain the product rule: d/dx ( f(x) . g(x) ) = f'(x).g(x) = g'(x) . f (x)
    2. Briefly run through trigonometric derivatives.* cos (x) differentiates to: -sin(x)* tan (x) differentiates to: sec^2 (x)
    3. Briefly run through the chain rule.* tan (2x) differentiates to: 2 sec^2 (2x)
    4. Bring everything together to get the two terms for the answer
    * First term of the solution is: [ 2 sec^2 (2x) . cos (x) ]* Second term of the solution is: [ - sin (x) . tan (2x) ]
    * Final Solution is: [ 2 sec^2 (2x) . cos (x) ] + [ - sin (x) . tan (2x) ]
SD
Answered by Shreyasi D. Maths tutor

6218 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning point of the line y = -2x^2 +5x -9


Where does the circle equation come from?


What is the product rule and when do you use it?


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning