How do you integrate ln(x)?

Here, we use integration by parts. We must imagine ln(x) as a product of 1 and ln(x). We usually take the function of x to be our dv/dx, however, in the case of ln(x), we take that to be u (it is a special case) and dv/dx=1. Following the rule: int(1ln(x))dx = uv - int(vu')dx ... We achieve: = xln(x) - int(x/x)dx = xln(x) - x + c We must remember to add our constant of integration on the end as it is an indefinite integral. Our numerator within the integral, v, comes from integrating dv/dx=1, achieving v=x, and x/x=1, which integrates to x.

OD
Answered by Omkar D. Maths tutor

3239 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y= sinx/2x+1


Prove that 1/(tanx) + tanx = 1/sinxcosx


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


Given the function f(x) = (x^2)sin(x), find f'(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning