How do you integrate ln(x)?

Here, we use integration by parts. We must imagine ln(x) as a product of 1 and ln(x). We usually take the function of x to be our dv/dx, however, in the case of ln(x), we take that to be u (it is a special case) and dv/dx=1. Following the rule: int(1ln(x))dx = uv - int(vu')dx ... We achieve: = xln(x) - int(x/x)dx = xln(x) - x + c We must remember to add our constant of integration on the end as it is an indefinite integral. Our numerator within the integral, v, comes from integrating dv/dx=1, achieving v=x, and x/x=1, which integrates to x.

OD
Answered by Omkar D. Maths tutor

3644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


Find the integral of y=6/(e^x+2) using calculus.


How do you go about sketching a curve when all you are given is the equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning