Simplify fully: (24 - √ 300)/(4√ 3 - 5). Give your answer in the form a√ b where a and b are integers and find the values of a and b.

rationalise the denominator (remove the surds) by multiplying by a fraction = 1, known as the rationalising factor = (24 - √ 300)/(4√ 3 - 5) * (4√ 3 + 5)/(4√ 3 + 5) = (24 - √ 300)(4√ 3 + 5)/(48 - 25) = (24 - √ 300)(4√ 3 + 5)/23 expand the brackets of the numerator and group like terms = (24 - 10√ 3)(4√ 3 + 5)/23 = (24 * 4√ 3 - 4√ 3 * 10√ 3 + 24 * 5 - 5 * 10√ 3)/23 = (96√ 3 - 120 + 120 - 50√ 3)/23 eliminate like terms = ((96 - 50)√ 3 + (120 - 120))/23 = (46√ 3 + 0)/23 = (46√ 3)/23 divide by common factor = 2√ 3 a = 2 b = 3

AL
Answered by Aloysius L. Maths tutor

6362 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

1ii) sketch y=x^2-4x-21


An amount of money was invested for 8 years. It earned compound interest at 2.5% per year. After 8 years the total value of the investment was £11,696.67. Work out the total interest earned.


How do you complete the square to answer quadratic equations?


Consider a right-angled triangle with an inside angle of 30° and a hypotenuse of 8cm. Calculate the length of the opposite side to the 30° angle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning