a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)

A) 4(cosec2(2x)) - (cosec2(x)) = 4/(sin2(2x)) - 1/(sin2(x)) = 4/[(2 sin(x) cos(x))2] - 1/(sin2(x)) B) 4/[(2 sin(x) cos(x))2] - 1/(sin2(x)) = 4/(4 sin2(x) cos2(x)) - 1/(sin2(x)) = 1/(sin2(x) cos2(x)) - cos2(x)/[sin2(x)cos2(x)] = {Using 1 - cos2(x) = sin2(x)} = sin2(x)/(sin2(x)cos2(x)) = 1/(cos2(x)) = sec2(x)

MR
Answered by Mario R. Maths tutor

18006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the roots of a quadratic equation?


Find the value of x if the following is true: 3(x – 2) < 8 – 2x


Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


How do I find the co-ordinates of a stationary point of a given line and determine whether it is a minimum or a maximum point?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences