Integrate the natural logarithm of x (ln x) with respect to x

In order to integrate ln x you have to use integration by parts, even though it appears there is only one term to be integrated. We get around this by instead writing it as (ln x)(1), where we treat the 1 as another function of x. Now we can apply the integration by parts rule by setting u = ln x and dv/dx = 1.
Integration by parts states that the integral of u(dv/dx) = uv - the integral of v(du/dx). Integrating v(du/dx) is easy because we know that d/dx(ln x) = 1/x, and the integral of 1 is x, so the two cancel and we are left with integrating 1 again. Once integrated fully, the answer will be x[(ln x) - 1] (+c) where c is the constant of integration.

AD
Answered by Archie D. Maths tutor

3785 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) show that (cosx)^2=8(sinx)^2-6sinx can be written as (3sinx-1)^2=2 b)Solve (cosx)^2=8(sinx)^2-6sinx


A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


A particle of mass 0.8 kg moving at 4 m/s rebounds of a wall with coefficient of restitution 0.3. How much Kinetic energy is lost?


Show, by first principles, that the differential of x^2 is 2x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning