Integrate the natural logarithm of x (ln x) with respect to x

In order to integrate ln x you have to use integration by parts, even though it appears there is only one term to be integrated. We get around this by instead writing it as (ln x)(1), where we treat the 1 as another function of x. Now we can apply the integration by parts rule by setting u = ln x and dv/dx = 1.
Integration by parts states that the integral of u(dv/dx) = uv - the integral of v(du/dx). Integrating v(du/dx) is easy because we know that d/dx(ln x) = 1/x, and the integral of 1 is x, so the two cancel and we are left with integrating 1 again. Once integrated fully, the answer will be x[(ln x) - 1] (+c) where c is the constant of integration.

AD
Answered by Archie D. Maths tutor

3324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the magnitude and direction of the resultant force of 3N horizontal and 5N vertical?


A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.


How do I find the maximum/minimum of a curve?


Solve the ODE y' = -x/y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning