How do I find the angle between 2 vectors?

First, we need to recall 2 basic definitions of vector operations:

The dot product is defined on vectors u=[u1, u2,...un] and v=[v1, v2,..., vn] as u . v = u1v1+u2v2+...+unvn
The length (norm) of a vector v=[v1, v2,..., vn] is the nonnegative scalar defined as ||v||=√(v . v)=√(v12+v22+...+vn2)
Note that u & v must be the same size to compute the dot product.

Now the formula for the angle, θ, between 2 vectors is as follows:

            cos(θ)=(u . v)/(||u|| ||v||)

Notice that u & v can be any size so long as they are both the same size. That is, this formula can be used to find the angle between vectors in 2 dimensions and also to find the angle between vectors in 100 dimensions, however hard that is to imagine.

A handy rearrangement of that formula to isolate θ is:

θ=cos-1( (u . v)/(||u|| ||v||) )
           

 

CH
Answered by Christopher H. Maths tutor

5477 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


How would I solve the equation 25^x = 5^(4x+1)?


How do you find the gradient of a line?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning