How do I find the angle between 2 vectors?

First, we need to recall 2 basic definitions of vector operations:

The dot product is defined on vectors u=[u1, u2,...un] and v=[v1, v2,..., vn] as u . v = u1v1+u2v2+...+unvn
The length (norm) of a vector v=[v1, v2,..., vn] is the nonnegative scalar defined as ||v||=√(v . v)=√(v12+v22+...+vn2)
Note that u & v must be the same size to compute the dot product.

Now the formula for the angle, θ, between 2 vectors is as follows:

            cos(θ)=(u . v)/(||u|| ||v||)

Notice that u & v can be any size so long as they are both the same size. That is, this formula can be used to find the angle between vectors in 2 dimensions and also to find the angle between vectors in 100 dimensions, however hard that is to imagine.

A handy rearrangement of that formula to isolate θ is:

θ=cos-1( (u . v)/(||u|| ||v||) )
           

 

CH
Answered by Christopher H. Maths tutor

5322 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What does differentiating do?


What does differentiation actually do?


The equation " x^3-3x+1=0 " has three real roots. Show that one of the roots lies between −2 and −1


What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning