How do I find the angle between 2 vectors?

First, we need to recall 2 basic definitions of vector operations:

The dot product is defined on vectors u=[u1, u2,...un] and v=[v1, v2,..., vn] as u . v = u1v1+u2v2+...+unvn
The length (norm) of a vector v=[v1, v2,..., vn] is the nonnegative scalar defined as ||v||=√(v . v)=√(v12+v22+...+vn2)
Note that u & v must be the same size to compute the dot product.

Now the formula for the angle, θ, between 2 vectors is as follows:

            cos(θ)=(u . v)/(||u|| ||v||)

Notice that u & v can be any size so long as they are both the same size. That is, this formula can be used to find the angle between vectors in 2 dimensions and also to find the angle between vectors in 100 dimensions, however hard that is to imagine.

A handy rearrangement of that formula to isolate θ is:

θ=cos-1( (u . v)/(||u|| ||v||) )
           

 

CH
Answered by Christopher H. Maths tutor

5250 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


AS Maths ->Expresss x^2 + 3x + 2 in the form (x+p)^2 + q... where p and q are rational number


Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.


How do I integrate 4x*exp(x^2 - 1) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning