Find the equation of the straight line which passes through the point (0, 3) and is perpendicular to the straight line with equation y = 2x.

We know that a straight line has a general formula: y = mx+c, where m is the gradient of the line and c is the y-intercept; so, we are looking to find m and c. 

The line passes through the point (0,3) so x=0 and y = 3; thus, we substitute

3 = m * 0 + c; 

c = 3;

so, y = mx+3;

If y = mx+3 and y = 2x are perpendicuar, we know that the gradients of the 2 lines are negative reciprocals to each other and we can write m as:

m = -1/2;

Hence, y = -1/2x+3

FM
Answered by Flavian M. Maths tutor

20987 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If I put £500 in the bank with an annual interest rate of 3% how much money will I have earned in 2 years?


For all values of x, f(x)=(x+1)^2 and g(x)=2(x-1). Show that gf(x)=2x(x+2)


Solve the simultaneous equations y=2x and y=x+3


A linear sequence starts a + 2b, a + 6b ,a + 10b ,…….. ,…….. The 2nd term has value 8. The 5th term has value 44. Work out the values of a and b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences