Find the equation of the straight line which passes through the point (0, 3) and is perpendicular to the straight line with equation y = 2x.

We know that a straight line has a general formula: y = mx+c, where m is the gradient of the line and c is the y-intercept; so, we are looking to find m and c. 

The line passes through the point (0,3) so x=0 and y = 3; thus, we substitute

3 = m * 0 + c; 

c = 3;

so, y = mx+3;

If y = mx+3 and y = 2x are perpendicuar, we know that the gradients of the 2 lines are negative reciprocals to each other and we can write m as:

m = -1/2;

Hence, y = -1/2x+3

FM
Answered by Flavian M. Maths tutor

20918 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 2x^2 + 6x + 6 in the form a(x^2 + b) + c by completing the square.


Find the turning point of the curve whose equation is y = (x-3)^2 + 6.


Solve by factorisation. 3x^2 + 11x – 20 = 0


How do I solve the inequality 7x+2 > 2x-3?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences