C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)

Here we use the formula for conditional probability:P(C|D)xP(D)=(𝑃(C∩D))= 0.3x0.6=0.18Note: 𝑃(C∩D)=𝑃(D∩C)=0.18Hence P(D|C)=𝑃(D∩C)/P(C) = 0.18/0.2 = 0.9P(C'∩D') = P(C'|D')xP(D')P(C'|D) = 0.7P(D')=0.4P(C')=0.8P(C∩D')=P(C|D')xP(D') << call this *Also=P(D'∩C)=P(D'|C)xP(C)= *and P(D'|C) = 1-P(D|C)=1-0.9 = 0.1P(D'∩C)=P(D'|C)xP(C)=0.1x0.2 = 0.02 = P(C∩D') 0.02= P(C|D')x0.4P(C|D') = 0.02/0.4 = 0.05P(C'|D') = 1-P(C|D') = 0.95P(C'∩D')=P(C'|D')xP(D') = 0.95 x 0.4 = 0.38P(C’ ∩ D) = P(C'|D) x P(D) = (1-P(C|D)) x P(D) = (1 - 0.3) x 0.6 = 0.6x0.7 = 0.42

SV
Answered by Sunny V. Maths tutor

10395 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


Find the roots of y=x^{2}+2x+2


How would we evaluate (1/3)^-3/2 ?


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning