C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)

Here we use the formula for conditional probability:P(C|D)xP(D)=(𝑃(C∩D))= 0.3x0.6=0.18Note: 𝑃(C∩D)=𝑃(D∩C)=0.18Hence P(D|C)=𝑃(D∩C)/P(C) = 0.18/0.2 = 0.9P(C'∩D') = P(C'|D')xP(D')P(C'|D) = 0.7P(D')=0.4P(C')=0.8P(C∩D')=P(C|D')xP(D') << call this *Also=P(D'∩C)=P(D'|C)xP(C)= *and P(D'|C) = 1-P(D|C)=1-0.9 = 0.1P(D'∩C)=P(D'|C)xP(C)=0.1x0.2 = 0.02 = P(C∩D') 0.02= P(C|D')x0.4P(C|D') = 0.02/0.4 = 0.05P(C'|D') = 1-P(C|D') = 0.95P(C'∩D')=P(C'|D')xP(D') = 0.95 x 0.4 = 0.38P(C’ ∩ D) = P(C'|D) x P(D) = (1-P(C|D)) x P(D) = (1 - 0.3) x 0.6 = 0.6x0.7 = 0.42

SV
Answered by Sunny V. Maths tutor

9343 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


How do you differentiate y=x^x?


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences