Line A is parallel to the line 4y+12x=24. Find the equation of Line A if it passes through the point (5,40/3).

Line A and line 4y+12x+24 are parallel. This means that they have the same gradient. In y=mx+c the gradient of the line is m. We can rearrange the equation 4y+12x+24 to find m. To begin with subtract 12x from both sides. This gives 4y=24-12x. Then divide both sides by 4. This gives y=6-3x. This tells us that the gradient of the line is -3, therefore the gradient of line A is also -3. We can now form the equation of the line A: y=-3x+c. To find the value for c we can place the coordinates which we were given in the question: 40/3=-3(5)+c. Multiply out the brackets to give: 40/3=-15+c. We can now find the value for c. Add 15 to both sides. This gives c=85/3. We can now form the equation for line A: y=-3x+85/3.

CB
Answered by Chloe B. Maths tutor

2975 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you solve simultaneous equations?


Sue has a cow farm. Her cows produced on average 25 litres of milk every day for 55 days. Sue bottles the milk in 1/2 litre bottles. How many bottles will Sue need to bottle all the milk.


How do you simplify (3x-3)/(x-1)?


A rectangular path has perimeter of 240m. If the rectangle is split lengthways, two paths of 160m are formed. Work out the lengths of the sides of the original path.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning