How do you differentiate using the chain rule?

The chain rule is used where the equation you are looking to differentiate is a function that is itself raised to a power. For example, we might have y = (x2-2)3 and want to differentiate with respect to x to give dy/dx = ?We could multiply this out to give a full equation, but this can be messy especially if the outside power (3 in the above example) is high. Instead, we use the chain rule to give us a simpler way of working out the answer.What we will do is say u = x2 - 2, meaning that y = u2 we now differentiate y with respect to u, so:dy/du = 2uNext, we want to differentiate u with respect to x, so:du/dx = 2xNow, we can neatly combine the two, as (dy/du) * (du/dx) = dy/dx in the same way that it would with a normal fraction.So, dy/dx = 2u * 2xFinally, we want to have this only in terms of x, so we substitute back in the u equation we established to start with.Giving dy/dx = 4x * (x2 - 2)

OB
Answered by Oliver B. Maths tutor

3402 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


Express x^2 - 7x + 2 in the form (x - p)^2 + q , where p and q are rational numbers.


Differentiate y=ln(2x^2) with respect to x


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning