How do you differentiate using the chain rule?

The chain rule is used where the equation you are looking to differentiate is a function that is itself raised to a power. For example, we might have y = (x2-2)3 and want to differentiate with respect to x to give dy/dx = ?We could multiply this out to give a full equation, but this can be messy especially if the outside power (3 in the above example) is high. Instead, we use the chain rule to give us a simpler way of working out the answer.What we will do is say u = x2 - 2, meaning that y = u2 we now differentiate y with respect to u, so:dy/du = 2uNext, we want to differentiate u with respect to x, so:du/dx = 2xNow, we can neatly combine the two, as (dy/du) * (du/dx) = dy/dx in the same way that it would with a normal fraction.So, dy/dx = 2u * 2xFinally, we want to have this only in terms of x, so we substitute back in the u equation we established to start with.Giving dy/dx = 4x * (x2 - 2)

OB
Answered by Oliver B. Maths tutor

3318 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


Differentiate y=sin(x)*x^2.


Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning