Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2

Differentiate the function to find the gradient at any point: df/dx = 2x - 1/(x+3)^2 - 4/(x^5)insert the value of 2 into f(x) and df/dx --> df/dx = 3.835, f(2) = 4.2625create the equation of the line by y-ycoord/x- x coord = gradient so y- 4.2625/x-2 = 3.825. We then rearrange this equation to produce an equation of the line in a simpler format

EF
Answered by Elliot F. Maths tutor

2949 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning