Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2

Differentiate the function to find the gradient at any point: df/dx = 2x - 1/(x+3)^2 - 4/(x^5)insert the value of 2 into f(x) and df/dx --> df/dx = 3.835, f(2) = 4.2625create the equation of the line by y-ycoord/x- x coord = gradient so y- 4.2625/x-2 = 3.825. We then rearrange this equation to produce an equation of the line in a simpler format

EF
Answered by Elliot F. Maths tutor

3200 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the equation of a line at a given point that is tangent to a circle?


When you integrate a function why do you add a constant?


By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning